介绍

CUDA: NVIDIA® CUDA® 工具包提供了开发环境,可供创建经 GPU 加速的高性能应用。借助 CUDA 工具包,您可以在经 GPU 加速的嵌入式系统、台式工作站、企业数据中心、基于云的平台和 HPC 超级计算机中开发、优化和部署应用。

cuDNN: NVIDIA® CUDA® Deep Neural Network library™ (cuDNN) is a GPU-accelerated library of primitives for deep neural networks. It provides highly tuned implementations of routines arising frequently in DNN applications.

安装这两样之后会自动拥有NVIDIA® Nsight™ Compute: It is an interactive kernel profiler for CUDA applications. It provides detailed performance metrics and API debugging via a user interface and command line tool. In addition, its baseline feature allows users to compare results within the tool. Nsight Compute provides a customizable and data-driven user interface and metric collection and can be extended with analysis scripts for post-processing results.

安装

Pytorch官网上目前最新配套配置:

Pytorch1.8: https://pytorch.org/get-started/locally/

CUDA11.1: https://developer.nvidia.com/zh-cn/cuda-downloads

cuDNN8.04: https://developer.nvidia.com/rdp/cudnn-archive

CUDA和cuDNN配置步骤

上面CUDA安装中若当前版本比要求的低需要装它提供最新的版本!!否则可能不能正常使用!!

最后一步环境变量:

C:\Program Files\NVIDIA GPU Computing Toolkit\CUDA\v11.1\bin

C:\Program Files\NVIDIA GPU Computing Toolkit\CUDA\v11.1\include

C:\Program Files\NVIDIA GPU Computing Toolkit\CUDA\v11.1\lib

C:\Program Files\NVIDIA GPU Computing Toolkit\CUDA\v11.1\libnvvp

参考博客:https://blog.csdn.net/shuiyixin/article/details/99935799?utm_medium=distribute.pc_relevant.none-task-blog-BlogCommendFromMachineLearnPai2-2.nonecase&depth_1-utm_source=distribute.pc_relevant.none-task-blog-BlogCommendFromMachineLearnPai2-2.nonecase